Innate immunity restricts Citrobacter rodentium A/E pathogenesis initiation to an early window of opportunity
نویسندگان
چکیده
Citrobacter rodentium infection is a mouse model for the important human diarrheal infection caused by enteropathogenic E. coli (EPEC). The pathogenesis of both species is very similar and depends on their unique ability to form intimately epithelium-adherent microcolonies, also known as "attachment/effacement" (A/E) lesions. These microcolonies must be dynamic and able to self-renew by continuous re-infection of the rapidly regenerating epithelium. It is unknown whether sustained epithelial A/E lesion pathogenesis is achieved through re-infection by planktonic bacteria from the luminal compartment or local spread of sessile bacteria without a planktonic phase. Focusing on the earliest events as C. rodentium becomes established, we show here that all colonic epithelial A/E microcolonies are clonal bacterial populations, and thus depend on local clonal growth to persist. In wild-type mice, microcolonies are established exclusively within the first 18 hours of infection. These early events shape the ongoing intestinal geography and severity of infection despite the continuous presence of phenotypically virulent luminal bacteria. Mechanistically, induced resistance to A/E lesion de-novo formation is mediated by TLR-MyD88/Trif-dependent signaling and is induced specifically by virulent C. rodentium in a virulence gene-dependent manner. Our data demonstrate that the establishment phase of C. rodentium pathogenesis in vivo is restricted to a very short window of opportunity that determines both disease geography and severity.
منابع مشابه
Mast cells limit systemic bacterial dissemination but not colitis in response to Citrobacter rodentium.
Enteropathogenic Escherichia coli and enterohemorrhagic E. coli cause an inflammatory colitis in human patients characterized by neutrophil infiltration, proinflammatory cytokine expression, and crypt hyperplasia. Citrobacter rodentium causes a similar colitis in mice and serves as a model for enteropathogenic E. coli infection in humans. C. rodentium induces systemic T-cell-dependent antibody ...
متن کاملCitrobacter rodentium infection induces MyD88-dependent formation of ubiquitinated protein aggregates in the intestinal epithelium.
Citrobacter rodentium utilizes a type 3 secretion system (T3SS) to inject effector proteins into host intestinal epithelial cells, causing structural and functional changes in these cells during infection. Here, we examined the effects of C. rodentium infection on host cell protein ubiquitination in vivo. We observed the appearance of ubiquitinated protein (Ub(+)) aggregates in intestinal epith...
متن کاملThe pathogenicity of an enteric Citrobacter rodentium Infection is enhanced by deficiencies in the antioxidants selenium and vitamin E.
The pathogenesis of a Citrobacter rodentium infection was evaluated in mice fed diets with a single deficiency in either selenium or vitamin E or with a double deficiency in both selenium and vitamin E compared to mice on nutritionally adequate diets. Mice fed the selenium- and vitamin E-deficient diet for 6 weeks had increased loads of C. rodentium in the colon and spleen, which were not obser...
متن کاملEpithelial-intrinsic IKKα expression regulates group 3 innate lymphoid cell responses and antibacterial immunity
Innate lymphoid cells (ILCs) are critical for maintaining epithelial barrier integrity at mucosal surfaces; however, the tissue-specific factors that regulate ILC responses remain poorly characterized. Using mice with intestinal epithelial cell (IEC)-specific deletions in either inhibitor of κB kinase (IKK)α or IKKβ, two critical regulators of NFκB activation, we demonstrate that IEC-intrinsic ...
متن کاملTLR signaling mediated by MyD88 is required for a protective innate immune response by neutrophils to Citrobacter rodentium.
Enteropathogenic Escherichia coli, enterohemorrhagic E. coli, and Citrobacter rodentium are classified as attaching and effacing pathogens based on their ability to adhere to intestinal epithelium via actin-filled membranous protrusions (pedestals). Infection of mice with C. rodentium causes breach of the colonic epithelial barrier, a vigorous Th1 inflammatory response, and colitis. Ultimately,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2017